5,683 research outputs found

    Dallas with balls: televized sport, soap opera and male and female pleasures

    Get PDF
    Two of the most popular of television genres, soap opera and sports coverage have been very much differentiated along gender lines in terms of their audiences. Soap opera has been regarded very much as a 'gynocentric' genre with a large female viewing audience while the audiences for television sport have been predominantly male. Gender differentiation between the genres has had implications for the popular image of each. Soap opera has been perceived as inferior; as mere fantasy and escapism for women while television sports has been perceived as a legitimate, even edifying experience for men. In this article the authors challenge the view that soap opera and television sport are radically different and argue that they are, in fact, very similar in a number of significant ways. They suggest that both genres invoke similar structures of feeling and sensibility in their respective audiences and that television sport is a 'male soap opera'. They consider the ways in which the viewing context of each genre is related to domestic life and leisure, the ways in which the textual structure and conventions of each genre invoke emotional identification, and finally, the ways in which both genres re-affirm gender identities

    A New Method for the High-Precision Assessment of Tumor Changes in Response to Treatment

    Full text link
    Imaging demonstrates that preclinical and human tumors are heterogeneous, i.e. a single tumor can exhibit multiple regions that behave differently during both normal development and also in response to treatment. The large variations observed in control group tumors can obscure detection of significant therapeutic effects due to the ambiguity in attributing causes of change. This can hinder development of effective therapies due to limitations in experimental design, rather than due to therapeutic failure. An improved method to model biological variation and heterogeneity in imaging signals is described. Specifically, Linear Poisson modelling (LPM) evaluates changes in apparent diffusion co-efficient (ADC) before and 72 hours after radiotherapy, in two xenograft models of colorectal cancer. The statistical significance of measured changes are compared to those attainable using a conventional t-test analysis on basic ADC distribution parameters. When LPMs were applied to treated tumors, the LPMs detected highly significant changes. The analyses were significant for all tumors, equating to a gain in power of 4 fold (i.e. equivelent to having a sample size 16 times larger), compared with the conventional approach. In contrast, highly significant changes are only detected at a cohort level using t-tests, restricting their potential use within personalised medicine and increasing the number of animals required during testing. Furthermore, LPM enabled the relative volumes of responding and non-responding tissue to be estimated for each xenograft model. Leave-one-out analysis of the treated xenografts provided quality control and identified potential outliers, raising confidence in LPM data at clinically relevant sample sizes

    Modular Invariance of Finite Size Corrections and a Vortex Critical Phase

    Get PDF
    We analyze a continuous spin Gaussian model on a toroidal triangular lattice with periods L0L_0 and L1L_1 where the spins carry a representation of the fundamental group of the torus labeled by phases u0u_0 and u1u_1. We find the {\it exact finite size and lattice corrections}, to the partition function ZZ, for arbitrary mass mm and phases uiu_i. Summing Z1/2Z^{-1/2} over phases gives the corresponding result for the Ising model. The limits m0m\rightarrow0 and ui0u_i\rightarrow0 do not commute. With m=0m=0 the model exhibits a {\it vortex critical phase} when at least one of the uiu_i is non-zero. In the continuum or scaling limit, for arbitrary mm, the finite size corrections to lnZ-\ln Z are {\it modular invariant} and for the critical phase are given by elliptic theta functions. In the cylinder limit L1L_1\rightarrow\infty the ``cylinder charge'' c(u0,m2L02)c(u_0,m^2L_0^2) is a non-monotonic function of mm that ranges from 2(1+6u0(u01))2(1+6u_0(u_0-1)) for m=0m=0 to zero for mm\rightarrow\infty.Comment: 12 pages of Plain TeX with two postscript figure insertions called torusfg1.ps and torusfg2.ps which can be obtained upon request from [email protected]

    Protein flexibility is key to cisplatin crosslinking in calmodulin

    Get PDF
    Chemical crosslinking in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) has significant potential for studying protein structures and proteinprotein interactions. Previously, cisplatin has been shown to be a crosslinker and crosslinks multiple methionine (Met) residues in apo-calmodulin (apo-CaM). However, the inter-residue distances obtained from nuclear magnetic resonance structures are inconsistent with the measured distance constraints by crosslinking. Met residues lie too far apart to be crosslinked by cisplatin. Here, by combining FTICR MS with a novel computational flexibility analysis, the flexible nature of the CaM structure is found to be key to cisplatin crosslinking in CaM. It is found that the side chains of Met residues can be brought together by flexible motions in both apo-CaM and calcium-bound CaM (Ca4-CaM). The possibility of cisplatin crosslinking Ca4-CaM is then confirmed by MS data. Therefore, flexibility analysis as a fast and low-cost computational method can be a useful tool for predicting crosslinking pairs in protein crosslinking analysis and facilitating MS data analysis. Finally, flexibility analysis also indicates that the crosslinking of platinum to pairs of Met residues will effectively close the nonpolar groove and thus will likely interfere with the binding of CaM to its protein targets, as was proved by comparing assays for cisplatin-modified/unmodified CaM binding to melittin. Collectively, these results suggest that cisplatin crosslinking of apo-CaM or Ca4-CaM can inhibit the ability of CaM to recognize its target proteins, which may have important implications for understanding the mechanism of tumor resistance to platinum anticancer drugs

    Manifestation of quantum chaos on scattering techniques: application to low-energy and photo-electron diffraction intensities

    Full text link
    Intensities of LEED and PED are analyzed from a statistical point of view. The probability distribution is compared with a Porter-Thomas law, characteristic of a chaotic quantum system. The agreement obtained is understood in terms of analogies between simple models and Berry's conjecture for a typical wavefunction of a chaotic system. The consequences of this behaviour on surface structural analysis are qualitatively discussed by looking at the behaviour of standard correlation factors.Comment: 5 pages, 4 postscript figures, Latex, APS, http://www.icmm.csic.es/Pandres/pedro.ht

    DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents

    Get PDF
    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is now frequently used in early clinical trial assessment of antiangiogenic and vascular disrupting compounds. Evidence of drug efficacy and dose-dependent response has been demonstrated with some angiogenesis inhibitors. This review highlights the critical issues that influence T1-weighted DCE-MRI data acquisition and analysis, identifies important areas for future development and reviews the clinical trial findings to date

    Relaxation and Localization in Interacting Quantum Maps

    Full text link
    We quantise and study several versions of finite multibaker maps. Classically these are exactly solvable K-systems with known exponential decay to global equilibrium. This is an attempt to construct simple models of relaxation in quantum systems. The effect of symmetries and localization on quantum transport is discussed.Comment: 32 pages. LaTex file. 9 figures, not included. For figures send mail to first author at '[email protected]

    Response of a mixed grass prairie to an extreme precipitation event

    Get PDF
    Citation: Concilio, A. L., Prevey, J. S., Omasta, P., O'Connor, J., Nippert, J. B., & Seastedt, T. R. (2015). Response of a mixed grass prairie to an extreme precipitation event. Ecosphere, 6(10), 12. doi:10.1890/es15-00073.1Although much research has been conducted to measure vegetation response to directional shifts in climate change drivers, we know less about how plant communities will respond to extreme events. Here, we evaluate the response of a grassland community to an unprecedented 43 cm rainfall event that occurred in the Front Range of Colorado in September, 2013 using vegetation plots that had been monitored for response to simulated precipitation changes since 2011. This rain caused soils to stay at or above field capacity for multiple days, and much of the seed bank germinated following the early autumn event. Annual introduced grasses, especially cheatgrass (Bromus tectorum), and several introduced forbs demonstrated strong positive increases in cover the following growing season. Native cool season grasses and native forbs showed limited changes in absolute cover despite continued high soil water availability, while native warm season grasses increased in cover the following summer. Treatments that previously altered the amounts and seasonality of rainfall during the 2011-2013 interval showed legacy effects impacting cover responses of introduced species and warm-season native grasses. Resin bag estimates of inorganic nitrogen flux resulting from the event indicated twice as much nitrogen movement compared to any previous collections during the 2011-2013 interval. Nitrogen additions to a subset of plots made in spring of 2014 demonstrated that the relative cover of introduced species could be further increased with additional soil nitrogen. Collectively, these results support the contention that extreme precipitation events can favor species already benefiting from other environmental change drivers

    Stochastic formulation of the renormalization group: supersymmetric structure and topology of the space of couplings

    Full text link
    The exact or Wilson renormalization group equations can be formulated as a functional Fokker-Planck equation in the infinite-dimensional configuration space of a field theory, suggesting a stochastic process in the space of couplings. Indeed, the ordinary renormalization group differential equations can be supplemented with noise, making them into stochastic Langevin equations. Furthermore, if the renormalization group is a gradient flow, the space of couplings can be endowed with a supersymmetric structure a la Parisi-Sourlas. The formulation of the renormalization group as supersymmetric quantum mechanics is useful for analysing the topology of the space of couplings by means of Morse theory. We present simple examples with one or two couplings.Comment: 13 pages, based on contribution to "Progress in Supersymmetric Quantum Mechanics" (Valladolid U.), accepted in Journal of Physics

    Oxygen exchange and C-reactive protein predict safe discharge in patients with H1N1 influenza

    Get PDF
    Background: Pandemic influenza has potential to overwhelm healthcare resources. There is uncertainty over performance of existing triage tools for hospital admission and discharge decisions. Aim: Our aim was to identify clinical criteria that predict safe discharge from hospital and develop a pragmatic triage tool to guide physician decision-making. Design: We retrospectively examined an existing database of patients who presented to the Royal Liverpool University Hospital during the 2010-2011 influenza pandemic. Methods: Inclusion criteria: patients ≥18 years, with PCR confirmed H1N1 influenza. Exclusion criteria: died in the emergency department or case notes unavailable. Successful discharge was defined as discharge within 24 hours of presentation and no readmission within seven days. Results: Eighty-six patients were included and 16 were successfully discharged. Estimated P/F ratio and C-reactive protein predicted safe discharge in a multivariable logistic regression model (AUC 0.883). A composite univariate predictor (estimated P/F minus C-reactive protein, AUC 0.877) was created to calculate specific cut off points for sensitivity and specificity. A pragmatic decision tool was created to incorporate these thresholds and relevant guidelines. Discharge: SpO2 (in air) ≥ 94% and CRP 50 or SpO2 ≤ 93% and CRP 50. Conclusions: We identified that oxygen exchange and CRP, a marker of acute inflammation, were the most important predictors of safe discharge. Our proposed simple triage model requires validation but has the potential to aid clinical decisions in the event of a future pandemic, and potentially for seasonal influenza
    corecore